Who can survive in CAESAR competition at round-zero?

نویسندگان

  • HakJu Kim
  • Kwangjo Kim
چکیده

Cryptographic primitives are required to protect an IT (Information Technology) system. They are used to provide CIA (Confidentiality, Integrity, and Availability) and other security attributes to the system. So far, NIST (National Institute of Standard and Technology) has successfully standardized AES (Advanced Encryption Standard) for confidentiality and SHA (Secure Hash Algorithm) for integrity. Authenticated Encryption is a cryptographic primitive or mode that simultaneously provides confidentiality, integrity, and authenticity. CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness), funded by NIST, is a competition for Authenticated Encryption. CAESAR provides a long example list of features that can be used to evaluate the submissions, but there is no public notion that indicates the importance of each feature. This paper analyzes Authenticated Encryption modes submitted to NIST and predict the essential features of the submissions to survive CAESAR competition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impossible Differential Cryptanalysis on Deoxys-BC-256

Deoxys is a final-round candidate of the CAESAR competition. Deoxys is built upon an internal tweakable block cipher Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-secret input called a tweak. This paper presents the first impossible differential cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal tweakable block cipher. First, we find a 4.5-round...

متن کامل

Cryptanalysis of some first round CAESAR candidates

ΑΕS _ CMCCv₁, ΑVΑLΑNCHEv₁, CLΟCv₁, and SILCv₁ are four candidates of the first round of CAESAR. CLΟCv₁ is presented in FSE 2014 and SILCv₁ is designed upon it with the aim of optimizing the hardware implementation cost. In this paper, structural weaknesses of these candidates are studied. We present distinguishing attacks against ΑES  _ CMCCv₁ with the complexity of two queries and the success ...

متن کامل

General classification of the authenticated encryption schemes for the CAESAR competition

An Authenticated encryption scheme is a scheme which provides privacy and integrity by using a secret key. In 2013, CAESAR (the “Competition for Authenticated Encryption: Security, Applicability, and Robustness”) was co-founded by NIST and Dan Bernstein with the aim of finding authenticated encryption schemes that offer advantages over AES-GCM and are suitable for widespread adoption. The first...

متن کامل

Note on the Robustness of CAESAR Candidates

Authenticated ciphers rely on the uniqueness of the nonces to meet their security goals. In this work, we investigate the implications of reusing nonces for three third-round candidates of the ongoing CAESAR competition, namely Tiaoxin, AEGIS and MORUS. We show that an attacker that is able to force nonces to be reused can reduce the security of the ciphers with results ranging from full key-re...

متن کامل

AEZ: Anything-But EaZy in Hardware

We provide the first hardware implementation of AEZ, a third-round candidate to the CAESAR competition for authenticated encryption. Complex, optimized for software, and impossible to implement in a single pass, AEZ poses significant obstacles for any hardware realization. Still, we find that a hardware implementation of AEZ is quite feasible. On Xilinx Virtex-6 FPGAs, our single-core design ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013